Artificial Neural Network-based Approach for Surface energy Prediction

Author:

Lai Fuming,Tong Shengfu

Abstract

This chapter explores the utilization of artificial neural network (ANN) models in predicting surface energy values. ANN models are a type of machine learning (ML) algorithm inspired by the way the human brain processes information. The chapter delves into the theoretical foundations of ANN models and their application in modeling surface energy, a crucial parameter in various scientific and industrial processes. By training the ANN models with relevant datasets, researchers can develop a predictive model capable of estimating surface energy values with high accuracy. The chapter discusses the methodology, challenges, and potential benefits of using an ANN-based approach for surface energy prediction, offering insights into the intersection of artificial intelligence and materials science.

Publisher

IntechOpen

Reference51 articles.

1. Wu Z-Z et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO Electroreduction. Journal of the American Chemical Society. 2021;(1):259-269

2. Wang Y et al. DNA origami single crystals with Wulff shapes. Nature Communications. 2021;(1):3011

3. Su H et al. Surface energy engineering of buried interface for highly stable perovskite solar cells with efficiency over 25%. Advanced Materials. 2024;(2):2306724

4. Xue-Guang Chen LL, Huang G-Y, Chen X-M, Li X-Z, Zhou Y-K, Zou Y, et al. Optofluidic crystallithography for directed growth of single-crystalline halide perovskites. Nature Communications. 2024;:3677

5. Zhang K et al. Surface energy mediated sulfur vacancy of ZnInS atomic layers for photocatalytic HO production. Advanced Functional Materials. 2023;(35):2302964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3