Systematic Characterization of High-Dielectric Constant Glass Materials Using THz-TDS Technique

Author:

Wada Osamu,Ramachari Doddoji,Yang Chan-Shan,Uchino Takashi,Pan Ci-Ling

Abstract

High-dielectric constant glasses are prerequisite for developing terahertz (THz) components and systems. Oxyfluorosilicate (OFS) glasses have been developed and their THz properties have been characterized by using THz-time domain spectroscopy (THz-TDS) measurements. High-dielectric constant (8–13) and low loss (6–9/cm) properties in the THz region have been demonstrated and their dielectric properties have been studied using the single oscillator-based model through a comparison with other multi-component silicate oxide glasses. Unified single oscillator model, which can distinguish the electronic and ionic contributions to the dielectric property, has been applied in this analysis. The physical origin of the dielectric constant enhancement and the importance of interplay between the electronic polarizability and ionicity in high-dielectric constant glasses have been revealed. This study has demonstrated the usefulness of THz-TDS technique for characterizing dielectric properties of multi-component glasses in detail.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3