Graphene-Based Nanosystems: Versatile Nanotools for Theranostics and Bioremediation

Author:

Lúcio Marlene,Fernandes Eduarda,Gonçalves Hugo,Machado Sofia,C. Gomes Andreia,Elisabete C.D. Real Oliveira Maria

Abstract

Since its revolutionary discovery in 2004, graphene— a two-dimensional (2D) nanomaterial consisting of single-layer carbon atoms packed in a honeycomb lattice— was thoroughly discussed for a broad variety of applications including quantum physics, nanoelectronics, energy efficiency, and catalysis. Graphene and graphene-based nanomaterials (GBNs) have also captivated the interest of researchers for innovative biomedical applications since the first publication on the use of graphene as a nanocarrier for the delivery of anticancer drugs in 2008. Today, GBNs have evolved into hybrid combinations of graphene and other elements (e.g., drugs or other bioactive compounds, polymers, lipids, and nanoparticles). In the context of developing theranostic (therapeutic + diagnostic) tools, which combine multiple therapies with imaging strategies to track the distribution of therapeutic agents in the body, the multipurpose character of the GBNs hybrid systems has been further explored. Because each therapy and imaging strategy has inherent advantages and disadvantages, a mixture of complementary strategies is interesting as it will result in a synergistic theranostic effect. The flexibility of GBNs cannot be limited to their biomedical applications and, these nanosystems emerge as a viable choice for an indirect effect on health by their future use as environmental cleaners. Indeed, GBNs can be used in bioremediation approaches alone or combined with other techniques such as phytoremediation. In summary, without ignoring the difficulties that GBNs still present before being deemed translatable to clinical and environmental applications, the purpose of this chapter is to provide an overview of the remarkable potential of GBNs on health by presenting examples of their versatility as nanotools for theranostics and bioremediation.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3