Periodogram Analysis under the Popper-Bayes Approach

Author:

Caminha-Maciel George

Abstract

In this chapter, we discuss the use of the Lomb-Scargle periodogram, its advantages, and pitfalls on a geometrical rather than statistical point of view. It means emphasizing more on the transformation properties of the finite sampling – the available data – rather than on the ensemble properties of the assumed model statistical distributions. We also present a brief overview and criticism of recent literature on the subject and its new developments. The whole discussion is under the geophysical inverse theory point of view, the Tarantola’s combination of information or the so-called Popper-Bayes approach. This approach has been very successful in dealing with large ill-conditioned, or under-determined complex problems. In the case of periodogram analysis, this approach allows us to manage more naturally the experimental data distributions and its anomalies (uncorrelated noise, sampling artifacts, windowing, aliasing, spectral leakage, among others). Finally, we discuss the Lomb-Scargle-Tarantola (LST) periodogram: an estimator of spectral content existing in irregularly sampled time series that implements these principles.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3