Aspects Regarding a Deep Understanding of the Prediction for Stock Market Movements

Author:

Xuemei Hu

Abstract

It is an important puzzle in the financial market to predict stock return movement direction. In this chapter, we not only propose (group) penalized logistic regression with multiple indicators to predict up- or downtrends, but also propose group penalized trinomial logit regression with multiple indicator groups to predict stock return movement direction: uptrends, sideways trends and downtrends. For the former, we construct the corresponding coordinate descent (CD) algorithm to complete variable selection and obtain parameter estimator, and introduce two-class confusion matrix, Receiver Operating Characteristic (ROC) and the area under a ROC curve (AUC) to assess two-class prediction performance. For the latter, we develop a rapidly convergent group coordinate descent (GCD) algorithm to simultaneously complete group selection and group estimation, introduce the relatively optimal Bayes classifiers to identify class indexes, and finally adopt three-class confusion matrix, Kappa, PDI, ROC surface and hypervolume under the ROC manifold (HUM) to assess three-class prediction performance.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3