MEMS-Based Atomic Force Microscope: Nonlinear Dynamics Analysis and Its Control

Author:

A. Ribeiro Mauricio,M. Balthazar Jose,M. Tusset Ângelo,M. Bueno Átila,H. Daum Hilson

Abstract

In this chapter, we explore a mathematical modelling that describes the nonlinear dynamic behavior of atomic force microscopy (AFM). We propose two control techniques for suppressing the chaotic motion of the system. The proposed model considers the interatomic interactions between the analyzed sample and the cantilever. These acting forces are van der Waals type, and we add a mathematical term that is a simple approximation to the viscoelasticity that possibly occurs in biological samples. We analyzed the behavior of the initial conditions of the proposed mathematical model, which showed a degree of complexity of the basins of attraction that were detected by entropy and uncertainty parameter, both detect if the basins have a fractal behavior. Numerical results showed that the nonlinear dynamic behavior has chaotic regions with the Lyapunov exponent, bifurcation diagram, and the Poincaré map. And, we propose two control techniques to suppress the chaotic movement of the AFM cantilever. First technique is the optimal linear feedback control (OLFC), which does not consider the nonlinearities of mathematical model. On the other hand, the control state dependent Riccati equation (SDRE) considers the nonlinearities of mathematical model. Both control techniques for a desired periodic orbit proved to be efficient.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3