Examination of Lightning-Induced Damage in Timber

Author:

Li Jingxiao,Li Jing

Abstract

The ancient Chinese architectures were constructed using timber as the main building material. Considering that the lightning strike is the primary natural cause of damage to ancient building, the lightning strike damage mechanism of ancient building timber and the related influencing factors are investigated using the representative timber materials from the ancient building. The burning of timber was mainly caused by the heat of lightning arc. The splitting and damage pit of timber were mainly caused by the mechanical force generated by the temperature rise of the injected by lightning current and air shock wave effects of the lightning. These ways all played in different roles under different conditions. The higher the water content of timber was, the easier it was to crack, and the greater the damage depth and the larger the damage area were. It was easy to burn for the dry timber or the loose timber with low density, but it was difficult for the thick timber. When the wood was too thin, the lightning air shock wave could cause damage. This research may provide reference for protection of ancient timber architecture from possible damage caused by lightning.

Publisher

IntechOpen

Reference20 articles.

1. S. Zhang, R. Lu. ICA3D – Intelligent computer-aided ancient Chinese architecture design. Advanced Engineering Informatics, 2012, (26):705-715

2. X. Yang, C. Gao. Study on Lightning-Proof Mechanism in Buildings via Naturism Concept in Ancient China. Proceedings of Eco-Sophia 2011 Parallel Session-8th International Whitehead Conference-Creativity and Harmony. Japan, Tokyo, 2011:325-332

3. J. Li, P. Song, R. Li, M. Qian, F. Qi. Analysis and preventive measures on fire disaster from direct lightning stroke at the ancient timber buildings. Journal of Southwestern Normal University (Natural Science Edition), 2016, 41(10):88-95

4. H. Zhang, Y. Liu, Y. Zhang. AHP-Based classification of lightning protection for heritage buildings [J]. Meteorological Science and Technology. 2015, 43(2):326-330

5. S. Wang. Lightning and fire protection of ancient buildings in gardens. Journal of Chinese garden, 1994,10(3): 40-45

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3