Ozonation of Non-Woven Ultrathin Fibrous Biomaterials for Medical and Packaging Implementations

Author:

Alexeeva Olga,Siracusa Valentina,L. Konstantinova Marina,A. Olkhov Anatoliy,L. Iordanskii Alexey,A. Berlin Alexandr

Abstract

Antibiotic resistance of pathogens is among the major concerns in various medical applications. Therefore, the search for the novel antimicrobial agents that could prevent pathogen’s resistance, while maintaining efficient treatment, is one of the most important issues for biomedicine nowadays. One of the relevant methods for the development of functional non-woven materials possessing antimicrobial properties is the use of ozone and ozonolysis products for the modification of fibrous materials. This approach has recently attracted both academic and industrial interest and has found various biomedical applications. Several methods providing antimicrobial properties to textiles using ozone or ozonolysis products were proposed, including encapsulation and/or direct introduction of ozone-generated antimicrobial agents into the fibrous polymer matrix and ozone treatment of non-woven fiber materials. For the latter, the ozonolysis products are uniformly distributed predominantly on the polymer surface but could be also formed inside the polymer bulk due to ozone diffusion through the amorphous areas or defects. It was found that ozone modification of fibrous materials could lead to increase in hydrophilicity and improvement in their functional properties (smoothness, elasticity, strength, antimicrobial activity). In this chapter, various aspects of ozone modification of non-woven fiber materials for biomedical applications are reported and discussed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3