One-Dimensional Modeling of Triple-Pass Concentric Tube Heat Exchanger in the Parabolic Trough Solar Air Collector

Author:

Minh Phu Nguyen,Thien Tu Ngo

Abstract

The parabolic trough solar collector has a very high absorber tube temperature due to the concentration of solar radiation. The high temperature leads to large heat loss to the environment which reduces efficiency of the parabolic trough collector. The heat loss reduction can be obtained by adopting a multi-pass fluid flow arrangement. In this chapter, airflow travels in three passes of the receiver to absorb heat from the glass covers and absorber tube to decrease surface temperatures. 1D mathematical model is developed to evaluate effective efficiency and the temperature distribution of surfaces and fluid. The mathematical modeling is based on air temperature gradients and solved by a numerical integration. Diameter ratios of outer glass to inner glass (r23) and inner glass to absorber tube (r12), Reynolds number (Re), and tube length (L) are varied to examine the efficiency and the temperature distribution. Results showed that the highest efficiency is archived at r23 = 1.55 and r12 in the range of 1.45 to 1.5. The efficiency increases with Re and decreases with L due to dominant heat transfer in terms of thermohydraulic behavior of a concentrating solar collector. With the optimum ratios, absorber tube temperature can reduce 15 K compared with another case.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat Transfer in Double-Pass Solar Air Heater: Mathematical Models and Solution Strategy;Heat Transfer - Fundamentals, Enhancement and Applications;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3