Development of New Drugs to Treat Taenia solium Cysticercosis: Targeting 26 kDa Glutathione Transferase

Author:

A. Zubillaga Rafael,Jiménez Lucía,García-Gutiérrez Ponciano,Landa Abraham

Abstract

Taenia solium causes neurocysticercosis, a parasitic infection of the central nervous system in humans. The costs of management, treatment, and diagnosis of patients with neurocysticercosis are high, and some patients do not respond to the currently available treatments. Helminth cytosolic glutathione transferases (GSTs) are essential enzymes involved in the regulation of immune responses, transport, and detoxification. In T. solium, three cytosolic GSTs with molecular masses of 26.5 (Ts26GST), 25.5 (Ts25GST), and 24.3 kDa (TsMσGST), classified as mu-alpha, mu and sigma GST-classes, respectively, constitute the main detoxification system, and they may be immune targets for the development of vaccines and new anthelmintics. We performed a successful virtual screen, and identified I7, a novel selective inhibitor of Ts26GST that showed a non-competitive inhibition mechanism towards substrate glutathione with a Ki of 55.7 mM and mixed inhibition towards the electrophilic substrate 1-chloro-2,4-dinitrobenzene with a Ki of 8.64 mM. Docking simulation studies showed that I7 can bind to a site that is adjacent to the electrophilic site and the furthest from the glutathione site. This new inhibitor of Ts26GST will be used as a lead molecule to develop new effective and safe drugs against diseases caused by T. solium.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3