Robust Bayesian Estimation

Author:

Saadoon Mannaa Ahmed

Abstract

Bayes methods in statistical inference are one of the important methods, and most of the research and messages tend to use the Bayes method in the estimation process. The regular Bayes method does not meet this problem, so in this thesis it is possible to verify the existence of prior data conflict by modeling the parameters of the prior distribution and then comparing the standard deviation of the prior distribution with the standard deviation of the posterior distribution, if the value of the standard deviation of the prior distribution is greater than the deviation. The standard distribution for the posterior distribution, it means that there is a problem of prior data conflict. Then we used an approach to solve this problem through a set of prior distributions called this approach by the robust Bayesian method, to identify the behavior of the estimators, two types of failure models were used, the first Weibull distribution to match it with continuous data. The second is a (Binomial) distribution to match the discrete data, the regular Bayes method is compared with the robust Bayesian method by using integrated mean square error (IMSE). In the Weibull distribution, the scale parameter (θ) and the survival function were estimated for two simulation experiments, the first was in the case of prior data unconflict the second was in the case of prior data conflict, so the simulation results showed that the robust Bayes method is the best by using the comparison criterion integrated mean square error (IMSE). On the practical side, real data were collected from Al-Manathira Hospital of the Najaf Health Department for the deaths of heart attack patients for 2018, the time of admission of the patient to the hospital until death was recorded, which is the time Exit where a sample of (15) patients was collected and the test of goodness of fit showed that the data follow a Weibull distribution with two parameters, the robust Bayes method was used to estimate the scale parameter and the survival function. As for the Binomial distribution, the parameter (P) and survival function were estimated for two experiments from the first simulation, which was in the case of prior data unconflict, as for the second experiment, it was in the case of prior data conflict. The simulation results showed that the robust Bayes method is the best by using the comparison criterion (IMSE). On the practical side, real data were collected from Yarmouk Teaching Hospital on breast cancer patients’ mortality from 2010 to 2017, and the test of goodness of fit showed that the data follow a Binomial distribution, the robust Bayes method was used to estimate the parameter (P) and survival function.

Publisher

IntechOpen

Reference15 articles.

1. Quaehebeur E, Decoman G. Imprecise Probability Models for Inference in Exponential Symposium on Imprecise Probabilities and their Applications. Pittsburgh, Pennsylvania; 2005

2. David JN, Michael E. Using Prior Expansions for Prior-Data Conflict Checking. 2020. Available from: https://arxiv.org/pdf/1902.10393

3. Walter G, Augustin T. Imprecision and prior-data conflict in generalized Bayesian inference. Journal of Statistical Theory and Practice. 2009;3:255-271

4. Abdulrahman S. Comparing different estimators of three parameters for transmuted Weibull distribution. Global Journal of Pure and Applied Mathematics. 2017;13:5115-5128

5. Abdulabaas F, Al-Mayali Y, Neama I. A comparison between the Bayesian and the classical estimators of Weibull distribution. Journal of Kufa for Mathematics and Computer. 2013;1(8):21-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3