Characterization, Photoelectric Properties, Electrochemical Performances and Photocatalytic Activity of the Fe2O3/TiO2 Heteronanostructure

Author:

Kouass Salah,Dhaouadi Hassouna,Othmani Abdelhak,Touati Fathi

Abstract

The Fe2O3/TiO2 nanocomposite was synthesized on FTO subtract via hydrothermal method. The crystal structure, morphology, band structure of the heterojunction, behaviors of charge carriers and the redox ability were characterized by XRD, HR-TEM, absorption spectra, PL, cyclic voltammetry and transient photocurrent spectra. The as-prepared Fe2O3/TiO2 photocatalysts with distinctive structure and great stability was characterized and investigated for the degradation of methylene blue (MB) dye in aqueous solution. The ability of the photocatalyst for generating reactive oxygen species, including O2− and.OH was investigated. It was revealed that the combination of the two oxides (Fe2O3 and TiO2) nano-heterojunction could enhance the visible response and separate photogenerated charge carriers effectively. Therefore, the remarkable photocatalytic activity of Fe2O3/TiO2 nanostructures for MB degradation was ascribed to the enhanced visible light absorption and efficient interfacial transfer of photogenerated electrons from to Fe2O3 to TiO2 due to the lower energy gap level of Fe2O3/TiO2 hybrid heterojunctions as evidenced by the UV–Vis and photoluminescence studies. The decrease of the energy gap level of Fe2O3/TiO2 resulted in the inhibition of electron–hole pair recombination for effective spatial charge separation, thus enhancing the photocatalytic reactions. Based on the obtained results, a possible mechanism for the improved photocatalytic performance associated with Fe2O3/TiO2 was proposed. The Fe2O3/TiO2 nanocomposite has a specific capacity of 82 F.g−1 and shows a higher capacitance than Fe2O3.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3