Author:
Ben Kahla Rabeb,Barkaoui Abdelwahed,Zohra Ben Salah Fatma,Chafra Moez
Abstract
According to the structural and metabolic demands of the body, proportionate and accurate bone quantities are resorbed and formed, establishing what is known as bone remodeling process. This physiological process requires a highly coordinated regulation through a complex interconnected network involving several cells from diverse origins, in addition to various hormones, cytokines, growth factors and signaling pathways. One of the main factors initiating the remodeling process is the mechanotransduction mechanism, through which osteocytes translate the mechanical stimuli subjected to the bone into biochemical signals, generating thereby the activation of osteoclasts and osteoblasts that govern bone resorption and formation. This mechanically-induced behavior of bone tissue has been the target of computational modeling and numerical simulations, to address biomechanical questions and provide information that is not amenable to direct measurements. In this context, the current chapter aims to review the coupling and mechanotransduction mechanisms spearheading the remodeling process, in addition to the main mathematical models developed over recent years and their use in bone numerical simulations based on the finite element method.