A Perspective on the Recent Amelioration of Co3O4 and MnO2 Bifunctional Catalysts for Oxygen Electrode Reactions

Author:

Venkateshwaran Selvaraj,Selvakumar Karuppiah,Duraisamy Velu,Murugesan Senthil Kumar Sakkarapalayam

Abstract

Metal-air batteries with the aid of high theoretical energy density and affability are trusted as propitious energy storage systems in today’s energy research. However, enforcement of the technology is still hindered by the sluggish kinetics of their electrode reactions, that is, oxygen evolution and oxygen reduction reaction (OER/ORR). Developing a catalyst with inherently greater bifunctional activity and durability is the finest solution to confront the aforementioned challenges. Transition metal oxides (TMOs) are the most appropriate choice of materials for that purpose since they are highly active, inexpensive, abundant and non-hazardous. Among the various transition metal oxides, MnO2 and Co3O4 are gaining much attention due to their superior bifunctional performance and alkaline stability owing to their structural features and physicochemical properties. With the inspiration from promoted catalytic activity of MnO2 and Co3O4, this chapter is fully devoted to these two catalysts. The activity structural relationship, recent developments and future directions of these materials for bifunctional catalysis have been discussed in more detail. Besides, the significant parameters judging the bifunctional activity, that is, phase, crystal facets, morphology, defects, strains and mixed metals oxide formations, have been illustrated with suitable evidence. In addition, the fundamentals of water oxidation and reduction reactions are explained with the mechanisms. Moreover, the physiochemical properties of MnO2 and Co3O4 materials and their influence on the catalytic activity are related for a better understanding of bifunctional catalysis. This collective perception will be highly useful for the comprehension and designing of advanced metal oxide catalysts to further improve bifunctional catalysis.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3