Effect of M Substitution on Structural, Magnetic and Magnetocaloric Properties of R2Fe17-x Mx (R = Gd, Nd; M = Co, Cu) Solid Solutions

Author:

Jemmali Mosbah,Bessais Lotfi

Abstract

The structure, magnetic and magnetocaloric properties of Nd2Fe17−xCox (x = 0; 1; 2; 3, 4) and Gd2Fe17-xCux (x = 0, 0.5, 1 and 1.5) solid solutions have been studied. For this purpose, these samples were prepared by arc melting and subsequent annealing at 1073 K for a 7 days. Structural analysis by Rietveld method on X-ray diffraction (XRD) have determined that these alloys crystallize in the rhombohedral Th2Zn17-type structure (Space group R¯3 m) and the substitution of iron by nickel and copper leads to a decrease in the unit cell volume. The Curie temperature (TC) of the prepared samples depends on the nickel and copper content. Based on the Arrott plot, these analyses show that Nd2Fe17-xCox exhibits a second-order ferromagnetic to paramagnetic phase transition around the Curie temperature. These curves were also used to determine the magnetic entropy change ∆SMax and the relative cooling power. For an applied field of 1.5 T, ∆SMax increase from 3.35 J/kg. K for x = 0 to 5.83 J/kg. K for x = 2. In addition the RCP increases monotonously. This is due to an important temperature range for the magnetic phase transition, contributing to a large ∆SMax shape. Gd2Fe17-xCux solid solution has a reduction of the ferromagnetic phase transition temperature from 475 K (for x = 0) to 460 K (for x = 1.5) is due to the substitution of the magnetic element (Fe) by non-magnetic atoms (Cu). The magnetocaloric effect was determined in the vicinity of the Curie temperature TC. By increasing the Cu content, an increase in the values of magnetic entropy (∆SMax) in a low applied field is observed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3