In Vivo Study of DNA Adduct (8-OHdG) Formation of Rattus novergicus Using Bisphenol a through Fenton-Like Reaction and Nickel (II) as Cancer Risk Biomarker

Author:

Budiawan ,Cahaya Dani Intan,Fransisca Olivyana Rugian Chrissy,Handayani Sri

Abstract

Bisphenol A (BPA) has been used in many consumer products including plastics, and food packaging. There is the evidence that Bisphenol A have potential to cause oxidative stress by disturbing the redox status in cells. We have conducted the in vivo study of BPA and Ni(II) exposure to Rattus novergicus and confirmed the formation of DNA adduct 8-OHdG as biomarker of oxidative stress and cancer risk. Subacute dose of BPA (2 mg/kg BW) and Ni (II) metals (0.1 μg/kg BW) have been exposed to animal test for 28 days. We collected the urine sample of animal samples every week. The formation of 8-OHdG found in urine of animal samples monitored by Liquid Chromatography–Mass Spectrometry (LC–MS/MS). The result of this study indicates that levels of 8-OHdG in animal samples exposed to BPA and BPA-Ni (II) increase every week. However, levels of 8-OHdG in animal samples exposed by BPA-Ni (II) is less than levels of 8-OHdG in animal samples exposed by BPA only. This can be happened because Ni (II) given to animal samples are not in the excessed levels, therefore the synergic effect of BPA and Ni (II) has not already been seen. The hydroxyl radical can cause oxidative DNA damage and interact with DNA guanine base by producing DNA adduct 8-hydroxy-2′-deoxyguanosine (8-OHdG). This book aimed to obtain information regarding in vivo study of BPA and metal ions exposure can generate hydroxyl radical as a dominant form of Reactive Oxygen Species (ROS) that can interact with macromolecules such as DNA and form DNA adduct as biomarker of oxidative stress and cancer risk.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3