Author:
Chelliah Machavallavan Nagaraj,Raj Rishi,Surappa M.K.
Abstract
In-situ magnesium based metal matrix composites (MMCs) belong to the category of advanced light weight metallic composites by which ceramic dispersoids are produced by a chemical reaction within the metal matrix itself. In-situ MMCs comprised uniform distribution of thermodynamically stable ceramic dispersoids, clean and unoxidized ceramic-metal interfaces having high interfacial strength. In last two decades, investigators have been collaborating to explore the possibility of enhancing the high temperature creep resistance performance in polymer-derived metal matrix composites (P-MMCs) by utilizing polymer precursor approach. A unique feature of the P-MMC process is that since all constituents of the ceramic phase are built into the polymer molecules itself, there is no need for a separate chemical reaction between the host metal and polymer precursor in order to form in-situ ceramic particles within the molten metal. Among the different polymer precursors commercially available in the market, the silicon-based polymers convert into the ceramic phase in the temperature range of 800–1000°C. Therefore, these Si-based polymers can be infused into molten Mg or Mg-alloys easily by simple stir-casting method. This chapter mainly focuses on understanding the structure–property correlation in both the Mg-based and Mg-alloy based in-situ P-MMCs fabricated by solidification processing via polymer precursor approach.
Reference30 articles.
1. Nagaraj C.M, Processing and characterization of in-situ magnesium metal matrix composites containing SiCNO particles, [Ph.D Thesis]. Ropar : Indian Institute of Technology; 2017
2. Koczak M.J, and Kumar K.S, In-situ process for producing a composite containing refractory material. US Patent 4,808,372, (1989)
3. Koczak M.J, and. Premkumar M.K, Emerging technologies for the in-situ production of MMCs. JOM-J. Min. Met. Mater. Soc., 1993 : 45 :44-48
4. Gibbons T.B, and O’hara S, The effect of internal oxidation on the damping capacity of copper-silicon alloys. J. Phil. Magaz., 1960 :5 :140-145
5. Tjong S.C., and Ma Z.Y, Microstructural and mechanical characteristics of in-situ metal matrix composites, Mater. Sci. Eng. R., 2000 :29 : 49-113