Anomaly Detection through Adaptive DASO Optimization Techniques

Author:

Bhosale Surendra,Deshmukh Achala,Deore Bhushan,Bhosale Parag

Abstract

An intrusion detection systems (IDS) detect and prevent network attacks. Due to the complicated network environment, the ID system merges a high number of samples into a small number of normal samples, resulting in inadequate samples to identify and train and a maximum false detection rate. External malicious attacks damage conventional IDS, which affects network activity. Adaptive Dolphin Atom Search Optimization overcomes this. Thus, the work aims to create an adaptive optimization-based network intrusion detection system that modifies the classifier for accurate prediction. The model selects feature and detects intrusions. Mutual information selects feature for further processing in the feature selection module. Deep RNNs detect intrusions. The novel Adaptive Dolphin Atom Search Optimization technique trains the deep RNN. Adaptive DASO combines the DASO algorithm with adaptive concepts. The DASO is the integration of the dolphin echolocation (DE) with the atom search optimization (ASO). Thus, the intrusions are detected using the adaptive DASO-based deep RNN. The developed adaptive DASO approach attains better detection performance based on several parameters such as specificity, accuracy, and sensitivity.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3