Challenges and Strategies of High-Capacity Transition Metal Oxides as Anodes for Lithium-Ion Batteries (LIBs)

Author:

Hdidou Loubna,Ghamouss Fouad,Manoun Bouchaib,Hannache Hassan,Alami Jones,Dahbi Mouad

Abstract

To satisfy the growing demand for high-energy and high-power-densities Lithium-ion Batteries (LIBs), the design and development of efficient electrode materials are necessary. In comparison to graphite, transition metal oxides (TMOs) have recently been widely investigated as anode materials due to their promising properties. These combine high specific capacities and high working potential, making them attractive anode candidates for emergent applications. Unfortunately, because of their poor electronic conductivity and high-volume expansion during cycling, they are unpractical and difficult to employ. To overcome these limitations, different approaches have been adopted. Examples are synthesizing the metal oxides at the nanometric scale, designing three-dimensional or hollow structures, coating the material with carbonaceous materials, etc. In this chapter, we report the elaboration of nanostructured transition metal oxides (Co3O4, Mn3O4, Co3−xMnxO4) using alginate gelling synthesis method. The Co3O4 octahedral-like nanoparticles display a remarkable cycling performance and good rate capability of 1194 mAh g−1 at C/5 and 937 mAh g−1 at 2C. Partially substituting the Co with Mn was shown to result in the production of Co2.53Mn0.47O4 and MnCo2O4 with high initial specific discharge capacities of 1228/921 and 1290/954 mAh g−1, respectively. As a Co-free material, the Mn3O4 delivers a reversible capacity of 271 mAh g−1, after 100 cycles.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3