Author:
Ali Akbar,Kuznetsov Aleksey,Ibrahim Muhammad,Abbas Azhar,Akram Nadia,Maqbool Tahir,Ushna
Abstract
Co-crystals are multicomponent molecular materials held together through non-covalent interactions that have recently attracted the attention of supramolecular scientists. They are the monophasic homogeneous materials where a naturally occurring pharmaceutical active ingredient (API) and a pharmaceutically acceptable co-crystal former are bonded together in a 1:1 via non-covalent forces such as H-bonds, π–π, and van der Waals forces. Co-crystallization is a promising research field, especially for the pharmaceutical industry, due to the enormous potential of improved solubility and bioavailability. Co-crystals are not the only multicomponent molecular materials, as there are many other forms of multicomponent molecular solids such as salts, hydrates, solvates, and eutectics. The formation of co-crystals can roughly be predicted by the value of ∆pKa, that is, if the ∆pKa is more than 3, then this monophasic homogeneous material usually falls in the category of salts, whereas if the ∆pKa is less than 2, then co-crystals are usually observed. A number of methods are available for the co-crystal formation, broadly classified into two classes established on state of formation, that is, solution-based and solid-based co-crystal formation. Similarly, a number of techniques are available for the characterization of co-crystals such as Fourier transforms-infrared spectroscopy, single-crystal and powder X-ray diffraction, etc. In this chapter, we will discuss the available methods for co-crystallization and its characterization.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献