Author:
Emmanuel Okafor Chukwuemeka,Agbenyo Folly Komla
Abstract
The negative environmental impacts of conventional power generation have resulted in increased interest in the use of renewable energy sources to produce electricity. However, the main problem associated with these non-conventional sources of energy generation (wind and solar photovoltaic) is that they are highly intermittent and thereby result in very high fluctuations in power generated. Hence, mechanical energy storage systems can be deployed as a solution to this problem by ensuring that electrical energy is stored during times of high generation and supplied in time of high demand. This work presents a thorough study of mechanical energy storage systems. It examines the classification, development of output power equations, performance metrics, advantages and drawbacks of each of the mechanical energy storage types and their various applications in the grid networks. The key findings in this work are the strategies for the management of the high costs of these mechanical storage devices. These include deployment of hybrid energy storage technologies, multi-functional applications of mechanical energy storage systems through appropriate control methodologies and proper sizing strategies for cost effectiveness and increased penetrations of renewable energy sources in the power grid.