Sol-Gel Production of Semiconductor Metal Oxides for Gas Sensor Applications

Author:

Belaid Walid,Houimi Amina,E. Zaki Shrouk,A. Basyooni Mohamed

Abstract

As they are widely utilized in industries including the food packaging industry, indoor air quality testing, and real-time monitoring of man-made harmful gas emissions to successfully combat global warming, reliable and affordable gas sensors represent enormous market potential. For environmental monitoring, chemical safety regulation, and many industrial applications, the detection of carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), and methane (CH4) gases is essential. To reliably and quantitatively detect these gases, much-improved materials and methods that are adaptable to various environmental factors are needed using low-cost fabrication techniques such as sol-gel. The advantages of employing metal oxide nanomaterials-based chemoresistive for creating high-performance gas sensors are shown by key metrics such as selectivity, sensitivity, reaction time, and detection. The primary sensing methods are also grouped and thoroughly covered. In light of the current constraints, anticipated future developments in the field of sol-gel nanomaterial-based chemoresistive gas sensors are also highlighted.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3