Terahertz Conductivity of Nanoscale Materials and Systems

Author:

Goyal Rahul,Tiwari Akash

Abstract

The history of RF technology can provide human beings a powerful lesson that the infrastructure of modern-day wireless communication depends on the complexity and configurability of silicon-based solid-state devices and integrated circuits. The field of THz technology is undergoing a developmental revolution which is at an inflection point and will bridge the ‘technology’ and ‘application’ gap in meaningful ways. This quantitative progress is a result of continuous and concerted efforts in a wide range of areas including solid-state devices, 2D materials, heterogeneous integration, nanofabrication and system packaging. In this chapter, the innovative theoretical approaches that have enabled significant advancement in the field of system-level THz technology are discussed. The focus is kept on the formulation of terahertz conductivity which plays a critical role in the modeling of devices that integrate technologies across electronics and photonics. Further, the findings build on coupling a probe pulse of terahertz illumination into the photoexcited region of amorphous silicon are presented and discussed in detail. Terahertz light has a higher penetration depth for opaque semiconductor materials which provides an accurate method to measure the conductivity of novel materials for the construction of efficient solar cells. This paves the way for the possibility to develop energy systems can address the need for reconfigurability, adaptability and scalability beyond the classical metrics.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3