Training Models for Skull-Base and Vascular Micro-Neurosurgery

Author:

Spetzger Uwe,Etingold Julie,von Schilling Andrej

Abstract

This overview presents computer-based augmented reality (AR) and virtual reality (VR) tools, in-vitro and in-vivo models as useful teaching tools for neurosurgical training, especially in skull-base surgery. An easy set-up and practicable training model for ventricular drainage (VD) is demonstrated. The model allows to evaluate practices, pitfalls and traceability in a virtual but realistic set-up for simulating VD placement. Computer-assisted planning and simulation of skull-base approaches and integration within the daily neurosurgical routine with VR and AR models are discussed for neurosurgical education. A set-up for microvascular training on a plastic rat and a specific vascular anastomosis practice kit with different tube diameters of 1–3 mm of specific plastic vessels for the training of microvascular anastomoses is shown. End-to-end and end-to-side anastomoses were performed with different levels of difficulty, trying to simulate realistic conditions in bypass surgery. Additionally, the teaching strategy of experimental silicone aneurysm clipping in a 3D printed plastic skull and silicone brain model is demonstrated in video sequences. An experimental animal model with microsurgically created bifurcation aneurysms is discussed because this training model for clip occlusion of aneurysms on a living object, still has the greatest relevance to neurosurgical reality.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3