Role of Force Fields in Protein Function Prediction

Author:

Hazarika Zaved,Rajkhowa Sanchaita,Nath Jha Anupam

Abstract

The world today, although, has developed an elaborate health system to fortify against known and unknown diseases, it continues to be challenged by new as well as emerging, and re-emerging infectious disease threats with severity and probable fluctuations. These threats also have varying costs for morbidity and mortality, as well as for a complex set of socio-economic outcomes. Some of these diseases are often caused by pathogens which use humans as host. In such cases, it becomes paramount responsibility to dig out the source of pathogen survival to stop their population growth. Sequencing genomes has been finessed so much in the 21st century that complete genomes of any pathogen can be sequenced in a matter of days following which; different potential drug targets are needed to be identified. Structure modeling of the selected sequences is an initial step in structure-based drug design (SBDD). Dynamical study of predicted models provides a stable target structure. Results of these in-silico techniques greatly depend on force field (FF) parameters used. Thus, in this chapter, we intend to discuss the role of FF parameters used in protein structure prediction and molecular dynamics simulation to provide a brief overview on this area.

Publisher

IntechOpen

Reference75 articles.

1. Nii-Trebi NI. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges. Biomed Res Int. 2017;2017:5245021

2. Genetics Home Reference Available from: https://ghr.nlm.nih.gov/condition/huntington-disease#genes. Accessed on 2020-07-16

3. World Health Organization, “Infections and infectious diseases: a manual for nurses and midwives in the WHO European Region,” Available from: http://www.euro.who.int/__data/assets/pdf_file/0013/102316/e79822.pdf. Accessed on 2020-07-16

4. Understanding Emerging and Re-emerging Infectious Diseases. National Institutes of Health (US): National Institutes of Health (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series 2007

5. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. 2020;5(4):536-44

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3