Author:
Kumar Varun,Shakher Chandra
Abstract
Digital holographic interferometry (DHI) is used worldwide for many scientific and industrial applications. In DHI, two digital holograms; one in the reference/ambient state of the object and another in changed state of object are recorded by electronic imaging sensors (such as CCD/CMOS) as reference holograms and object holograms, respectively. Phase of object wavefronts in different states of the object is numerically reconstructed from digital holograms. The interference phase is reconstructed by subtracting the phase of reference hologram from the phase of object hologram, without performing any phase-shifting interferometry. Thus, no extra effort is needed in DHI for calculating the interference phase. Apart from direct reconstruction of interference phase from two digital holograms, the recent development, availability of recording devices at video rate, and high-performance computers make the measurements faster, reliable, robust, and even real-time. In this chapter, DHI is presented for the investigation of temperature distribution and heat transfer parameters such as natural convective heat transfer coefficient and local heat flux around the surface of industrial heated objects such as cylindrical wires and heat sinks.