A Survey on IoT Fog Resource Monetization and Deployment Models

Author:

M. Akujuobi Cajetan,Nwokoma Faith

Abstract

There has been an immense growth in the number of applications of devices using the Internet of Things (IoT). Fog nodes (FN) are used between IoT devices and cloud computing in fog computing (FC) architecture. Indeed, an IoT application can be fully serviced by local fog servers without propagating IoT data into the cloud core network. FC extends the cloud-computing paradigm to the network edge. This paper surveys fog resources monetization and the wide use of IoT devices in making FC a paramount technology necessary to achieve real-time computation of IoT devices. We looked into the monetization architectures applied by various literature. We found that the decentralization fog monetization architecture stands out since it solves some issues posed by centralized fog monetization architecture, such as QoS and additional fee costs by third parties payment gateway.

Publisher

IntechOpen

Reference45 articles.

1. Wright A. The growth in connected IoT devices is expected to generate 79.4ZB of data in 2025, according to a new IDC forecast. Framingham, MA, USA, Rep. PrUS45213219: International Data Corporation (IDC); 2019. Accessed: April 2020. [Online]. Available from: https://www.idc.com/getdoc.jsp?containerId=prUS45213219

2. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. San Jose, CA, USA, Rep. C11-734435-00: CISCO; 2015. Accessed: April 2019. [Online]. Available: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf

3. Santos GL et al. Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures. Journal of Cloud Computing. 2018;7(1):16

4. Do CT, Tran NH, Pham C, Alam MGR, Son JH, Hong CS. A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing. In: IEEE Proceedings of the 2016 International Conference on Information Networking (ICOIN). 2015. pp. 324-329. [Online] Available from: https://ieeexplore.ieee.org/document/7057905

5. Yu C, Lin B, Guo P, Zhang W, Li S, He R. Deployment and dimensioning of fog computing-based internet of vehicle infrastructure for autonomous driving. IEEE Internet Things Journal. 2019;6(1):149-160

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3