Genetic Diversity in Almond (Prunus dulcis)

Author:

Sana Sadia,Akhter Naheed,Amjum Fozia,Gul Khan Samreen,Akram Muhammad

Abstract

Almond (Prunus dulcis), a stone fruit belonging to a family Rosaceae (rose) is broadly cultivated for ornament and fruit. Within this genus, the almond is very much associated with the peach, and these two fruits share the same subgenus the Amygdalus. About 430 species are spread all through the northern temperate regions of the world. The Mediterranean climate region of the Middle East like Turkey and Pakistan eastward to Syria is native to the almond and its related species. Almond is one of the ancient fruit trees known to the Asian as well as European regions with the most primitive proof of cultivation dating about 2000 B.C. Prunus dulcis (Almond) is a nutrient-loaded nut crop. Almond possesses a great genetic diversity due to the genetically controlled self-incompatibility system which can be estimated by a morphological characteristic including molecular markers and isoenzymes with a wide range of marker techniques. Simple sequence repeats (SSR) involving RFLP or SNP are the most commonly used molecular techniques among the DNA-based molecular symbols. Particular agronomic characters, e.g. kernel bitterness or self-compatibility can also be traced by these molecular markers. The direct association between the level of diversity and the basis of the germplasm cannot be understood by the studies of genetic diversity. Genetic diversity cannot be seriously lost by self-compatibility in almonds. The breeding, conservation, and cultivation of wild-growing almonds may similarly advantageous after the genetic diversity research studies (especially those applying molecular markers).

Publisher

IntechOpen

Reference74 articles.

1. Roncoroni F, del Barrio R, editors. Feasibility study on climate conditions for the production of almond (Prunus amygdalus Batsch)'Guara'in the southwest region of Buenos Aires province. VII International Symposium on Almonds and Pistachios 1219; 2017

2. Rao HJ. Therapeutic applications of almonds (Prunus amygdalus L.): a review. Journal of Clinical and Diagnostic Research. 2012;6(1):130-5

3. Mangalagiri Mandal G. Therapeutic Applications of Almonds (Prunus amygdalus L): A Review. 2012

4. Couto M, Raseira M, Herter F, Silva J, editors. Influence of High Temperatures at Blooming Time on Pollen Production and Fruit Set of Peach'Maciel'and'Granada'. VIII International Symposium on Temperate Zone Fruits in the Tropics and Subtropics 872; 2007

5. Penso GA, Citadin I, Scariotto S, Danner MA, Sachet MR. Genotype-environment interaction on the density of peach buds cultivated in a humid subtropical climate. Revista Brasileira de Fruticultura. 2018;40(5)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3