Author:
Ali Mergheni Mohamed,Mahdi Belhajbrahim Mohamed,Boushaki Toufik,Sautet Jean-Charles
Abstract
Oxy-flames from burners with separated jets present attractive perspectives because the separation of reactants generates a better thermal efficiency and reduction of pollutant emissions. The principal idea is to confine the fuel jet by oxygen jets to favor the mixing in order to improve the flame stability. This chapter concerns the effect of equivalence ratio on characteristics of a non-premixed oxy-methane flame from a burner with separated jets. The burner of 25 kW power is composed with three aligned jets, one central methane jet surrounded by two oxygen jets. The numerical simulation is carried out using Reynolds Average Navier-Stokes (RANS) technique with k-ε as a turbulence closure model. The eddy dissipation model is applied to take into account the turbulence-reaction interactions. The study is performed with different global equivalence ratios (0.7, 0.8 and 1). The validation of the numerical tools is done by comparison with experimental data of the stoichiometric regime (Ф = 1). The two lean regimes of Ф = 0.7 and 0.8 are investigated only by calculations. The velocity fields with different equivalence ratio are presented. It yields to increase of longitudinal and transverse velocity, promotes the fluctuation in interaction zone between fuel and oxygen also a better mixing quality and a decrease of the size of the recirculation zone.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献