Energy Minimization

Author:

Gautam Budhayash

Abstract

The energetic state of a protein is one of the most important representative parameters of its stability. The energy of a protein can be defined as a function of its atomic coordinates. This energy function consists of several components: 1. Bond energy and angle energy, representative of the covalent bonds, bond angles. 2. Dihedral energy, due to the dihedral angles. 3. A van der Waals term (also called Leonard-Jones potential) to ensure that atoms do not have steric clashes. 4. Electrostatic energy accounting for the Coulomb’s Law m protein structure, i.e. the long-range forces between charged and partially charged atoms. All these quantitative terms have been parameterized and are collectively referred to as the ‘force-field’, for e.g. CHARMM, AMBER, AMBERJOPLS and GROMOS. The goal of energy Minimization is to find a set of coordinates representing the minimum energy conformation for the given structure. Various algorithms have been formulated by varying the use of derivatives. Three common algorithms used for this optimization are steepest descent, conjugate gradient and Newton–Raphson. Although energy Minimization is a tool to achieve the nearest local minima, it is also an indispensable tool in correcting structural anomalies, viz. bad stereo-chemistry and short contacts. An efficient optimization protocol could be devised from these methods in conjunction with a larger space exploration algorithm, e.g. molecular dynamics.

Publisher

IntechOpen

Reference24 articles.

1. Ebejer Jean-Paul, Fulle Simone, Morris Garrett M., Finn Paul W. The emerging role of cloud computing in molecular modelling, Journal of Molecular Graphics and Modelling, 2013; 44,177-187.

2. Adcock S A, McCammon J A. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev. 2006;106:1589-1615.

3. Hinchliffe Alan. Molecular Modelling for Beginners, 2nd Edition. John Wiley & Sons Ltd. 2003.

4. Leach AR. Molecular Modelling: Principles and Applications. Prentice Hall, 2001.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001;790-804.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3