Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper Limb Exoskeletons and Exosuits

Author:

Fu Jirui,Al-Mashhadani Zubadiah,Currier Keith,Al-Ani Al-Muthanna,Park Joon-Hyuk

Abstract

Myoelectric control systems as the emerging control strategies for upper limb wearable robots have shown their efficacy and applicability to effectively provide motion assistance and/or restore motor functions in people with impairment or disabilities, as well as augment physical performance in able-bodied individuals. In myoelectric control, electromyographic (EMG) signals from muscles are utilized, improving adaptability and human-robot interactions during various motion tasks. Machine learning has been widely applied in myoelectric control systems due to its advantages in detecting and classifying various human motions and motion intentions. This chapter illustrates the challenges and trends in recent machine learning algorithms implemented on myoelectric control systems designed for upper limb wearable robots, and highlights the key focus areas for future research directions. Different modalities of recent machine learning-based myoelectric control systems are described in detail, and their advantages and disadvantages are summarized. Furthermore, key design aspects and the type of experiments conducted to validate the efficacy of the proposed myoelectric controllers are explained. Finally, the challenges and limitations of current myoelectric control systems using machine learning algorithms are analyzed, from which future research directions are suggested.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3