Author:
Kralj-Iglič Veronika,Pocsfalvi Gabriella,Iglič Aleš
Abstract
Theoretical and experimental evidence on cellular vesicles (CVs) isolated from blood is presented. It is suggested that comparison of the observed shapes with theoretical shapes obtained by minimization of membrane-free energy in combination with electron microscopy is key in the assessment of CV identity. We found that shapes of CVs isolated from blood by repetitive centrifugation (up to 20.000 g) and washing, and observed by scanning electron microscopy (SEM) agreed well with theoretically observed shapes. It is indicated that these CVs are colloids deriving from residual blood cells, mostly platelets. SEM images of washed erythrocytes undergoing budding and transmission electron microscopy (TEM) images of isolated erythrocyte microvesicles likewise showed smooth shapes that we described as characteristic for colloidal CVs. Besides these, the CV isolates may contain other small particles, such as exosomes and viruses, as observed in isolates from tomato homogenate, however, we could not identify such particles in isolates from healthy human blood. Theory of deviatoric elasticity underlaying minimization of the membrane free energy and simulated two-component vesicles with the orientational ordering of anisotropic constituents are presented to indicate the interdependence of curvature—sorting of membrane constituents and their orientational ordering in strongly anisotropically curved regions.
Reference57 articles.
1. Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737-738. DOI: 10.1038/171737a0
2. Callier V. Cells talk and help one another via tiny tube networks. Scientific American Quanta Magazine; 2018 Available from: https://www.scientificamerican.com/article/cells-talk-and-help-one-another-via-tiny-tube-networks/
3. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants. Current Protocols in Cell Biology. 2006;3:1-29. DOI: 10.1002/0471143030.cb0322s30
4. Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 2018;7:1535750. DOI: 10.1080/20013078.2018.1535750
5. Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. Journal of Extracellular Vesicles. 2016;5:1-17. DOI: 10.3402/jev.v5.30829
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献