SAR Image Denoising using MMSE Techniques

Author:

Yahia Mohamed,Ali Tarig

Abstract

Synthetic aperture radar (SAR) provides many advantages over optical remote sensing, principally the all-weather and all-day acquisition capability. For this reason, SAR images have been exploited for many applications such as forestry, agriculture, disaster monitoring, sea/ice monitoring. However, the main limitation in SAR images is the contamination with the multiplicative speckle noise. The speckle damages the radiometric quality of SAR images and contracts the performance of information extraction techniques. Many methods have been proposed in the literature to reduce speckle noise. These methods, however, must avoid degrading the useful information in the SAR images, such as textures, local mean of backscatter, and point targets. The minimum mean square error (MMSE) techniques have been largely applied in SAR image speckle denoising. The objective of this chapter is to review and give new insights into the MMSE denoising of SAR images. In particular, the performances of three MMSE-based techniques which are the commonly applied Lee sigma filter and the newly introduced iterative MMSE (IMMSE) filter, and the infinite number of looks prediction (INLP) filter are studied.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3