Numerical Gradient Computation for Simultaneous Detection of Geometry and Spatial Random Fields in a Statistical Framework

Author:

Conrad Koch Michael,Fujisawa Kazunori,Murakami Akira

Abstract

The target of this chapter is the evaluation of gradients in inverse problems where spatial field parameters and geometry parameters are treated separately. Such an approach can be beneficial especially when the geometry needs to be detected accurately using L2-norm-based regularization. Emphasis is laid upon the computation of the gradients directly from the governing equations. Working in a statistical framework, the Karhunen-Loève (K-L) expansion is used for discretization of the spatial random field and inversion is done using the gradient-based Hamiltonian Monte Carlo (HMC) algorithm. The HMC gradients involve sensitivities w.r.t the random spatial field and geometry parameters. Building on a method developed by the authors, a procedure is developed which considers the gradients of the associated integral eigenvalue problem (IEVP) as well as the interaction between the gradients w.r.t random spatial field parameters and the gradients w.r.t the geometry parameters. The same mesh and linear shape functions are used in the finite element method employed to solve the forward problem, the artificial elastic deformation problem and the IEVP. Analysis of the rate of convergence using seven different meshes of increasing density indicates a linear rate of convergence of the gradients of the log posterior.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3