Author:
Naga Srinivasa Rao Repalle Venkata,Abera Tola Keneni,Abebe Ashebo Maamo
Abstract
The introduction of fuzzy set theory was given by Zadeh. The introduction of fuzzy graph theory was given by Kauffman. Later the structure of fuzzy graph was developed Rosenfeld. The traditional fuzzy set cannot be used to completely describe all the evidence in problems where someone wants to know in how much degree of non-membership. Such a problem got the solution by Atanassov who introduced intuitionistic fuzzy set which described by a membership, a non-membership and a hesitation functions. An intuitionistic fuzzy set is used to solve problems involving uncertainty and imprecision that can’t be handled by a traditional fuzzy set. This chapter introduced the interval-valued intuitionistic fuzzy line graphs (IVIFLG) and explored the results related to IVIFLG. As a result, many theorems and propositions related to IVIFLG are developed and supported by proof. Moreover, some remarkable isomorphic properties, strong IVIFLG, and complete IVIFLG have been investigated, and the proposed concepts are illustrated with the examples.