Abstract
Circular economic paradigm applies residue from one process as input material for another, fostering sustainable benefits for humanity. Anaerobic digestion (AD) is an attractive technology for biogas production in a circular economy. Digestate is the residual organic matter generated as coproduct of biogas. Because digestate is nutrient rich and largely stabilized, it has varied management options. Digestate is suitable for direct use as bio-fertilizer and is a good amendment material to improve soil physical properties. However, the quality, safety, and utility of digestate are dependent upon the characteristics of feedstock, digester process, pre- and post- digestion treatments. Digestates emanating from AD of animal manure, energy crops, food processing residues, and other feedstocks have been reported in published literature. On the other hand, there is dearth of reports on digestate emanating from AD process that utilized cassava peeling residue (CPR) as sole feedstock. This chapter presents relevant information on digestates including production, feedstock, quality and safety requirements, processing and treatment technologies, regulatory aspects, applications management options, cost implications, as well as challenges and opportunities. In addition, new results of nitrogen (N), phosphorus (P), and potassium (K) compositions of liquid fraction of CPR digestate are reported.
Reference97 articles.
1. Gómez X, Cuetos MJ, García AI, Morán A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. Journal of Hazardous Materials. 2007;149(1):97-105. DOI: 10.1016/j.jhazmat.2007.03.049
2. Tambone F, Orzi V, D’Imporzano G, Adani F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresource Technology. 2017;243:1251-1256. DOI: 10.1016/j.biortech.2017.07.130
3. Antoniou N, Monlau F, Sambusiti C, Ficara E, Barakat A, Zabaniotou A. Contribution to circular economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. Journal of Cleaner Production. 2019;209:505-514. DOI: 10.1016/j.jclepro.2018.10.055
4. Salomon KR, Lora ES. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenergy. 2009;3(9):1101-1107. DOI: 10.1016/j.biombioe.2009.03.001
5. Kusch S, Schäfer W, Kranert M. Dry digestion of organic residues. In: Kumar S, editor. Integrated Waste Management. Vol. 1. Croatia: IntechOpen; 2011. pp. 115-134. ISBN: 978-953-307-469-6. Available from: http://cdn.intechopen.com/pdfs/17433/InTech-Dry_digestion_of_organic_residues.pdf
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献