Resting-State fMRI Advances for Functional Brain Dynamics

Author:

Larrivee Denis

Abstract

The development of functional magnetic resonance imaging (fMRI) in quiescent brain imaging has revealed that even at rest, brain activity is highly structured, with voxel-to-voxel comparisons consistently demonstrating a suite of resting-state networks (RSNs). Since its initial use, resting-state fMRI (RS-fMRI) has undergone a renaissance in methodological and interpretive advances that have expanded this functional connectivity understanding of brain RSNs. RS-fMRI has benefitted from the technical developments in MRI such as parallel imaging, high-strength magnetic fields, and big data handling capacity, which have enhanced data acquisition speed, spatial resolution, and whole-brain data retrieval, respectively. It has also benefitted from analytical approaches that have yielded insight into RSN causal connectivity and topological features, now being applied to normal and disease states. Increasingly, these new interpretive methods seek to advance understanding of dynamic network changes that give rise to whole brain states and behavior. This review explores the technical outgrowth of RS-fMRI from fMRI and the use of these technical advances to underwrite the current analytical evolution directed toward understanding the role of RSN dynamics in brain functioning.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3