Anisotropic Mechanical Properties of 2-D Materials

Author:

Li Qiang

Abstract

While prior reviews and research articles focused on the various synthetic routes and microstructural controls of 2D nanomaterials as well as their functional applications, this chapter discloses the anisotropic behaviors of 2D materials and puts emphasis on the mechanical anisotropy of three distinct 2D materials, namely graphene, MoS2 and Al alloy coating, representative of carbon, inorganic and metallic 2D crystalline materials. Except for the relatively low interlayer cohesive stress, the in-plane anisotropy of the former two materials classes is subjected primarily to the hexagonal structure of the unit cells of the graphene and MoS2. The anisotropy of metallic thin films with high-density grain boundaries with preferential directionality, rendered by the non-equilibrium synthetic methods, results from both the conventional Taylor factor and the directionality of the grain boundaries. Despite 2D materials’ wide spectrum of applications, such as electronics, energy devices, sensors, coating etc., the mechanical anisotropy could be critical for certain mechanical applications, such as friction, and provide instructions on the durability, reliability and property optimization in the various applications of different 2D materials.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3