A Practical Framework for Probabilistic Analysis of Embankment Dams

Author:

Guo Xiangfeng,Dias Daniel

Abstract

Uncertainties, such as soil parameters variability, are often encountered in embankment dams. Probabilistic analyses can rationally account for these uncertainties and further provide complementary information (e.g., failure probability and mean/variance of a model response) than deterministic analyses. This chapter introduces a practical framework, based on surrogate modeling, for efficiently performing probabilistic analyses. An active learning process is used in the surrogate model construction. Two assessment stages are included in this framework by respectively using random variables (RV) and random fields (RF) for the soil variability modeling. In the first stage, a surrogate model is coupled with three probabilistic methods in the RV context for the purpose of providing a variety of useful results with an acceptable computational effort. Then, the soil spatial variability is considered by introducing RFs in the second stage that enables a further verification on the structure reliability. The introduced framework is applied to an embankment dam stability problem. The obtained results are validated by a comparison with direct Monte Carlo Simulations, which also allows to highlight the efficiency of the employed methods.

Publisher

IntechOpen

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3