The Borel-Cantelli Lemmas, and Their Relationship to Limit Superior and Limit Inferior of Sets (or, Can a Monkey Really Type Hamlet?)

Author:

P. Godbole Anant

Abstract

The purpose of this chapter is to show that if a monkey types infinitely, Shakespeare’s Hamlet and any other works one may wish to add to the list will each be typed, not once, not twice, but infinitely often with a probability of 1. This dramatic fact is a simple consequence of the Borel-Cantelli lemma and will come as no surprise to anyone who has taken a graduate-level course in Probability. The proof of this result, however, is quite accessible to anyone who has but a rudimentary understanding of the concept of independence, together with the notion of limit superior and limit inferior of a sequence of sets.

Publisher

IntechOpen

Reference10 articles.

1. Gamow G. One Two Three Infinity. New York: Bantam Books; 1971

2. Ash RB. Real Analysis and Probability. New York: Academic Press; 1972

3. Borel E. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo. 1909;27:247-271

4. Cantelli FP. Su due applicazioni di un teorema di G. Boole. Reale Academia Nazionale dei Lincei. 1917;26:295-302

5. Balakrishnan N, Stepanov A. Generalization of the Borel-Cantelli lemma. The Mathematical Scientist. 2010;35:6162

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3