Molecular Mechanisms and Strategies Contributing toward Abiotic Stress Tolerance in Plants

Author:

Nasir Aimen,Shahzadi Irum,Nawaz Ismat

Abstract

Plants respond to climate change via sensing the extreme environmental conditions at cell level, which initiated significant changes in their physiology, metabolism, and gene expression. At the cell membrane, plants activate certain genes (like GRP, PRP, AGP) to provide strengthening to cell wall. Drought and salinity stress tolerance attained by osmotic adjustments, activation of transcriptional factors (like AREB, ABF, DREB2), and regulation of Na+ homeostasis via transporters (like NSCC, NHX1, SOS1, HKT1, LTC1). For adaptations to chilling and frost stress, plants use hydrophobic barriers (waxes/cuticles), antinucleator (cryoprotective glycoprotein), and antifreeze proteins. Higher expression of HSPs (heatshock proteins such as HSP70, HSP100, HSP90, HSP60) is important for thermal tolerance. Tolerance to heavy metal (HM) stress can be achieved via vacuolar sequestration and production of phytochelatin, organic acids and metallothionein. ROS generated due to abiotic stresses can be alleviated through enzymatic (APX, CAT, POD, SOD, GR, GST) and nonenzymatic (ascorbate, glutathione, carotenoids, flavonoids) antioxidants. Genetic manipulation of these genes in transgenic plants resulted in better tolerance to various abiotic stresses. Genetic engineering of plants through various genome editing tools, such as CRISPR/Cas9, improve the abiotic stress tolerance as well as enhance the crops’ quality, texture, and shelf life.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3