Community-Based and Everyday Life Gait Analysis: Approach to an Automatic Balance Assessment and Fall Risk Prediction in the Elderly

Author:

Arom Gómez Arias Britam,Gonzalo Chávez Orellana Sebastián,Cecilia Ortega-Bastidas Paulina,Esteban Aqueveque Navarro Pablo

Abstract

This chapter discusses the potential of wearable technologies in predicting fall risks among older adults, a demographic susceptible to falls due to age-related walking ability decline. We aimed to explore the feasibility of portable body sensors, mobile apps, and smartwatches for real-time gait analysis in non-clinical, everyday settings. We used classification models like Random Forest, Support Vector Machine with a radial basis function kernel, and Logistic Regression to predict fall risks based on gait parameters. Notably, both Random Forest and Support Vector Machine models demonstrated over 72% accuracy, underscoring the critical role of feature selection and model choice in fall risk prediction. These technologies can enhance older adults’ quality of life by predicting fall risks. However, future developments should focus on technologies adapted to non-clinical environments, predictivity, and high-risk group usability. The integration of these features may enable more efficient fall risk assessment systems.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3