Abstract
The intention behind carrying out this research work is to analyze the heat transfer characteristics in a Magnetohydrodynamic (MHD) boundary layer nanofluid flow over a stretching sheet. Two phase representation of nanofluid studied the consequence of Brownian motion along with thermophoresis. The major purpose of study is to investigate the significant role of prominent fluid parameters thermophoresis, Brownian motion, Eckert number, Schmidt number and magnetic parameter on profile of velocity, temperature distribution and concentration. Runge–Kutta Fehlberg (RKF) method was adopted to numerically solve the non-linear governing equations and the linked boundary conditions by use of shooting technique. Over all the consequence of prominent fluid parameters are explained via graphs, whereas distinction of several valuable engineering quantities like skin friction coefficient, local Nusselt number and local Sherwood number are also tabulated. The finding of present study helps to control the rate of heat transportation as well as fluid velocity in any manufacturing processes and industrial applications to make desired quality of final product.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献