Addition of Organic Compounds in Gelatin-biopolymer Gel Electrolyte for Enhanced Dye-sensitized Solar Cells

Author:

Devikala Sundaramurthy,Maryleedarani Abisharani Johnson

Abstract

This chapter introduced a new series of organic compound additives like thiophene 2,5-dicarboxylic acid (TDA), sulfanilamide (SAA), 2,6-diamino pyridine (DAP), dibenzo-18-crown-6 (DBC) and 2,6-pyridine dicarboxylic acid (PDA) with gelatin/KI/I2 consist gel polymer electrolytes for dye-sensitized solar cells (DSSCs) application. Nowadays, it is focusing on biopolymers for preparing gel electrolytes for DSSCs application which is a conventional renewable energy source. Biopolymers are abundant in nature, and they are non-toxic, thermally stable, environmentally friendly, low-cost, and have good mechanical and physical properties. The introduced novel gelatin (GLN) biopolymer-based gel electrolytes play a role in improving ionic conductivity and stability, and it also play a better ability for ionic mobility. The low-cost and commercialized organic additive molecules with electron donors like S, O and N elements were strongly coordinated on the surface TiO2 and fermi level shift into negative potentials. The organic additive compound SAA achieved a very active additive and easily reduced the recombination reaction between the surface of TiO2 and I3− ions. This phenomenon readily improves the stability and overall η of the DSSC. During the DSSCs process, intrinsic charge carrier transfer between both electrodes as well as the continuous regeneration of the dye molecules. The surface study and conductivity of prepared gelatin-based gel electrolyte with N, S and O-based additives were characterized by fourier transform infrared spectroscopy (FTIR), UV-visible, X ray diifraction (XRD), Electrochemical Impedance Spectroscopy (EIS) and dye-sensitized solar cells (DSC), respectively. Furthermore, to examine the adsorption behaviour of organic additives on TiO2 (101) surface and negative fermi level shift on TiO2 surface were analysed by density functional theory (DFT) theoretical study.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3