Mechanical Self-Assembly Technology for 2D Materials

Author:

Hu Kai-Ming,Zhang Wen-Ming

Abstract

Self-assembled mechanical instabilities can offer a new technology roadmap for micro/nanopatterns of two-dimensional (2D) materials, which depends on the deterministic regulation of mechanical instability-induced self-assemblies. However, due to atomic thinness and ultra-low bending stiffness, different types of non-designable and non-deterministic multimode coupling mechanical instabilities, such as multimode-coupled crumpling, chaotic thermal-fluctuation-induced rippling, and unpredictable wrinkling, are extremely easy to be triggered in 2D materials. The above mode-coupled instabilities make it exceedingly difficult to controllably self-assemble 2D nanocrystals into designed morphologies. In this chapters, we will introduce a novel micro/nanopatterning technology of 2D materials based on mechanical self-assemblies. Firstly, a post-curing transfer strategy is proposed to fabricate multiscale conformal wrinkle micro/nanostructures of 2D materials. Secondly, we report a deterministic self-assembly for programmable micro/nanopatterning technology of atomically thin 2D materials via constructing novel 2D materials/IML/substrate trilayer systems. Finally, based on the micro/nanopatterning technology of 2D materials, we proposed a new fabrication method for the flexible micro/nano-electronics of deterministically self-assembled 2D materials including three-dimensional (3D) tactile and gesture sensors. We fundamentally overcome the key problem of self-assembly manipulation from randomness to determinism mode by decoupling mono-mode mechanical instability, providing new opportunities for programmable micro/nanopatterns of 2D materials. Moreover, mechanical instability-driven micro/nanopatterning technology enables simpler fabrication methods of self-assembled electronics based on 2D materials.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3