High Entropy Alloys for Aerospace Applications

Author:

Dada Modupeola,Popoola Patricia,Adeosun Samson,Mathe Ntombi

Abstract

In the aerospace industry, materials used as modern engine components must be able to withstand extreme operating temperatures, creep, fatigue crack growth and translational movements of parts at high speed. Therefore, the parts produced must be lightweight and have good elevated-temperature strength, fatigue, resistant to chemical degradation, wear and oxidation resistance. High entropy alloys (HEAs) characterize the cutting edge of high-performance materials. These alloys are materials with complex compositions of multiple elements and striking characteristics in contrast to conventional alloys; their high configuration entropy mixing is more stable at elevated temperatures. This attribute allows suitable alloying elements to increase the properties of the materials based on four core effects , which gives tremendous possibilities as potential structural materials in jet engine applications. Researchers fabricate most of these materials using formative manufacturing technologies; arc melting. However, the challenges of heating the elements together have the tendency to form hypoeutectic that separates itself from the rest of the elements and defects reported are introduced during the casting process. Nevertheless, Laser Engineering Net Shaping (LENS™) and Selective Laser Melting (SLM); a powder-based laser additive manufacturing process offers versatility, accuracy in geometry and fabrication of three-dimensional dense structures layer by layer avoiding production errors.

Publisher

IntechOpen

Reference44 articles.

1. Smith K. Aircraft propulsion and gas turbine engines—2nd Edition AF El-Sayed CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL, 33487-2742, USA. 2017. Distributed by Taylor & Francis Group, 2 Park Square, Milton Park, Abingdon, OX14 4RN, UK. 1447pp. Illustrated. £130. (20% discount available to RAeS members via www.crcpress.com using AKQ07 promotion code). ISBN 978-1-4665-9516-3. The Aeronautical Journal. 2018;122(1251):854-855

2. Alderliesten R. Introduction to Aerospace Structures and Materials. Netherlands; 2018. pp. 41-58

3. Rana S, Fangueiro R. Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications. United States of America: Woodhead Publishing; 2016. pp. 1-15

4. Yeh JW et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials. 2004;6(5):299-303

5. Tong C-J et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A. 2005;36(4):881-893

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3