Robust Template Update Strategy for Efficient Visual Object Tracking

Author:

Haileslassie Gebrehiwot Awet,Bescos Jesus,Garcia-Martin Alvaro

Abstract

Real-time visual object tracking is an open problem in computer vision, with multiple applications in the industry, such as autonomous vehicles, human-machine interaction, intelligent cinematography, automated surveillance, and autonomous social navigation. The challenge of tracking a target of interest is critical to all of these applications. Recently, tracking algorithms that use siamese neural networks trained offline on large-scale datasets of image pairs have achieved the best performance exceeding real-time speed on multiple benchmarks. Results show that siamese approaches can be applied to enhance the tracking capabilities by learning deeper features of the object’s appearance. SiamMask utilized the power of siamese networks and supervised learning approaches to solve the problem of arbitrary object tracking in real-time speed. However, its practical applications are limited due to failures encountered during testing. In order to improve the robustness of the tracker and make it applicable for the intended real-world application, two improvements have been incorporated, each addressing a different aspect of the tracking task. The first one is a data augmentation strategy to consider both motion-blur and low-resolution during training. It aims to increase the robustness of the tracker against a motion-blurred and low-resolution frames during inference. The second improvement is a target template update strategy that utilizes both the initial ground truth template and a supplementary updatable template, which considers the score of the predicted target for an efficient template update strategy by avoiding template updates during severe occlusion. All of the improvements were extensively evaluated and have achieved state-of-the-art performance in the VOT2018 and VOT2019 benchmarks. Our method (VPU-SiamM) has been submitted to the VOT-ST 2020 challenge, and it is ranked 16th out of 38 submitted tracking methods according to the Expected average overlap (EAO) metrics. VPU_SiamM Implementation can be found from the VOT2020 Trackers repository1.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small-sized Moving Objects Tracking Algorithm;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3