PAHs, PCBs and Environmental Contamination in Char Products

Author:

Williams Karl,Khodier Ala,Bentley Peter

Abstract

Biochar can have unique benefits to terrestrial and aquatic ecosystems. Investigations of biochar effectiveness within these environments often come from homogenous feedstocks, such as plant biomass, which have simple thermochemical processing methods and produce physically and chemically stable biochar. Current methods to increase biochar production include the addition of oil-derived products such as plastics, which produces a more heterogenous feedstock. This feedstock is similar to materials from waste recycling streams. The adoption of more heterogenous feedstocks produces additional challenges to biochar production and use. This can result in pollution contained within the feedstock being transferred to the biochar or the creation of pollutants during the processing. With the current climate emergency, it is essential to eliminate environmental contamination arising from biochar production. It is critical to understand the physiochemical composition of biochar, where detailed analysis of contaminants is often overlooked. Contamination is common from heterogenous feedstocks but on commercial scales, even homogeneous biochar will contain organic pollutants. This chapter investigates biochar produced from various waste feedstocks and the challenges faced in thermochemical processing. Using Automotive Shredder Residue (ASR) as an example of a heterogeneous feedstock, the levels of contamination are explored. Potential solutions are reviewed while assessing the environmental and economic benefits of using biochar from mixed sources.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3