Author:
Davarpanah Armita,A. Babaie Hassan,Huang Guanyu
Abstract
Modeling the climate system requires a formal representation of the characteristics of the system elements and the processes that change them. The Climate System Ontology (CSO) represents the semantics of the processes that continuously cause change at component and system levels. The CSO domain ontology logically represents various links that relate the nodes in this complex network. It models changes in the radiative balance caused by human activities and other forcings as solar energy flows through the system. CSO formally expresses various processes, including non-linear feedbacks and cycles, that change the compositional, structural, and behavioral characteristics of system components. By reusing the foundational logic of a set of top- and mid-level ontologies, we have modeled complex concepts such as hydrological cycle, forcing, greenhouse effect, feedback, and climate change in the ontology. This coherent, publicly available ontology can be queried to reveal the input and output of processes that directly impact the system elements and causal chains that bring change to the whole system. Our description of best practices in ontology development and explanation of the logics that underlie the extended upper-level ontologies help climate scientists to design interoperable domain and application ontologies, and share and reuse semantically rich climate data.