Fullerene Based Sensor and Biosensor Technologies

Author:

Deniz Ertuğrul Uygun Hilmiye,Onur Uygun Zihni

Abstract

Sensor and biosensor technologies have shown rapid progress in recent years. These technologies use nanomaterials that have an important place in immobilization materials for recognition analyte molecules. Although fullerenes among these materials have attracted much attention in recent years, their number of studies is less than other carbon-based nanomaterials. Thanks to its completely closed structure and at least 30 double bonds, it can be modified from 30 points, which provides a great advantage. At these points, thanks to the ability to modify amine, thiol, carboxyl or metallic groups, modification residues can be created for all kinds of immobilization. According to the zero-dimensional nanomaterial class, fullerenes provide an extremely large surface area. Therefore, it provides more biological or non-biological recognition receptors immobilized on this surface area. Moreover, increasing the surface area with more recognition agent also increases the sensitivity. This is the most important parameter of sensor technologies, which is provided by fullerenes. In this book chapter, the development of fullerene-modified sensor and biosensor technologies are explained with examples, and fullerene modifications are given in figures as fullerene derivatives. Contribution was made in the method development stage by giving comparison of fullerene type sensor and biosensor systems.

Publisher

IntechOpen

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3